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} ABSTRACT
The effect of surface tension on the shape of a two-dimensional jet
emerging from an orifice is considered. It is shown that the slope of the
surface profile of the jet is not continuous at the separation points. Both
velocity and curvature are infinite at these points. The problem is solved
numerically by series truncation. Jet profiles are presented for various
values of the surface tension. In addition, perturbation solutions for both

small and large values of the surface tension are derived.&
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-_j:'f SIGNIFICANCE AND EXPLANATION i
{ The classical Kirchhoff' solution for the shape of a two-dimensional jet '.“"J
:::: emerging from an orifice yields infinite curvature at the separation points. ‘
{-\. It is shown that this singularity is not removed by including surface tension J f
- PR
in the boundary condition. On the contrary surface tension makes the problem ',“'1
-
o
. more singular by introducing a discontinuity in the slope. This result is in o
b agreement with Vanden-Broeck's®’® £indings. ~
.};:.j
7 The problem is solved numerically by collocation for arbitrary values of i"f
:_:: the surface tension. In addition perturbation solutions for both small and =T
o
T large values of the surface tension are presented. jf.-%
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The responsibility for the wording and views expressed in this descriptive
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THE EPFECT OF SURFACE TENSION ON THE SHAPE OF THE KIRCHHOFF JET
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i 1. INTRODUCTION. ___j
The classical Kirchhoft1 solution for the shape of a two-dimensional jet f!!j

emerging from an orifice yields infinite curvature at the separation points. f;:j

A similar singularity arises in cavitating flow problems such as those ;:i

considered by Ackerbergz. Cumberbatch and Norbu:y3 and Vanden-aroeck"s. f’f
thden-Broeck‘ considered the influence of surface tension on the gé;?

cavitating flow past a flat plate. He provided numerical and analytical ;iz

Y DY S

evidence that the slope of the free surface is discontinuous at the separation
points. Thus the inclusion of surface tension did not remove the infinite

curvature at the separation points. On the contrary it made the problem more

singular by introducing a discontinuity in slope. These results were
generalized by thden-aroecks for the cavitating flow past a curved obstacle.
In the present paper we investigate the effect of surface tension on the
Kirchhoff1 jet. A numerical scheme based on series truncation is presented to
solve the problem for arbitrary values of the surface tension. The numerical
results are qualitatively similar to those obtained by thden-aroock"s. The
slope 1s not continuous at the separation points. Both velocity and curvature

are infinite at these points. In addition perturbation solutions for both

small and large values of the surface tension are presented.

*Department of Mathematics and Mathematics Research Center, University of
Wisconsin-Madison, Madison, WI 53705

Sponsored by the United States Army under Contract No. DAAG29-80-C~-0041 and
the National Science Foundation under Grant ¥o. MCS800-1960C.
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The problem is formulated in Section 2. The numerical results are

presented in Section 3. The perturbation calculations are derived in Section
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2. FPORMULATION.
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Ve consider a two-dimensiocnal jet emerging from an orifice (see Pigure

- 1). The orifice is assumed to be hole in a plane wall of small thickness.
\. ' The effects of gravity, viscosity and compressibility are neglected. Far
i

\t

downstream from the orifice the speed in the interior of the jet is equal to a
constant U and the two streamlines bounding the jet are straight and

parallel. We denote by L the thickness of the jet far downstream from the

orifice.

We define dimensionless variables by choosing I as the unit length

and U as the unit velocity. We introduce the potential function ¢ and the
stream function . Without loss of generality we choose ¢ = 0 at the

5 separation points and ¥ = 0 on the streamline IJ. It fonoys from the

:,« choice of the dimensionless wyariables that % = 1 on the streamline 1J°'.

We denote the complex velocity by u = iv and we define the function

T = 16 Dby the relation

.‘. a=-jvs= .t-j.O (1)
%e shall seek T - 10 as an analytic function of £ = ¢ + i§ in the half

* Y plane ¥ € 0. The complex potential plane is sketched in Pigure 2.

; On the surface of the jet the Bernoulli equation and the pressure jump

l due to surface tension yield

3 -2x=1¢ (2)
z Here q is the flow speed, K the curvature of the jet surface, T the

3]

surface tension and ¢ the density. In dimensionless variables this becomes
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Sketch of the flow and the coordinates.

Figure 1.
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. T8 _a o2r -

5 ¢ 3432 (e 1, v=0 ¢>0 (3)
'.:;_: T 30 a 6 2t -

2 ¢ Tzl N =1 420 (4)

Here & 1is the Weber number defined by

2

o = RLU (S) B

T SRS

-ind

" |

The kinematic condition in IS and IS8' yield o

A

0=0, $¥=0 ¢<0 (6) ]

» 0=0, $=1 ¢<0 (7 o
g 3
; This completes the formulation of determining the function T ~ i6. FPor oy
each a, T - i0 must be analytic is the half plane ¢ < 0 and satisfy the _

boundary conditions (3), (4), (5) and (6).
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3. NUMERICAL RESULTS

b Following Birkhoff and Zaram:oneno6 we define the new variable t by
the relation

‘-I(Q-I»iﬂ - - % (¢ + %) (8)

This transformation maps the flow domain onto the unit circle in the complex

t-plane so that the walls go onto the real Adiameter, and the free surfaces

onto the circumference (see Figure 3).

-
L]
a

We introduce the function £(t) by the relation

‘}‘

2 t-10=tnt -2~ raw (9)

b

Here 8 is the value of © at ¢ = ¢ = 0. The function f(t) is bounded

_‘ and continuous in the unit circle |t| € 1, and analytic in the interior.

Al The conditions (6) and (7) show that f(t) can be expressed in the form of a

y

A Taylor expansion in even powers of ¢t. Hence
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t-10=tnt-Rgn1-¢3H+ J U
® n+
n=0

1c2“ (10)
The function (10) satisfy (5) and (6). The coefficients Un and the constant
8 have to be determined to satisfy (3). The condition (4) will then be
automatically satisfied by symmetry.
We use the notation t = Itleic 8o that points on SJ are given by

t = eio, 0 <o« %. Using (8) we rewrite (3) in the form

cos O ? dE a 2;
sinoc © a0 2 (e n (an

Here T(0) and 0(g) denote the values of T and 8 on the free surface
SJ.

We solve the problem approximately by truncating the infinite series in
(10) after N terms. We find the N coefficients U  and the constant B8
by collocation. Substituting ¢t = eio into (10) and taking the real and

imaginary parts we obtain

N-1
T(0) = -2 10g(2 sin o) + § U, . cos 2no (12)
] n+1
n=0
N-1
~ 2
0(0) =0 - ;E-o +B8+ ) U .q8in 2no (13)
n=0
We now introduce the N + 1 mesh points
" 1

> a8
Using (12) and (13) we obtain [t(o)lo_vI and [do]o-oI

coefficients Un and the constant 8. Substituting these expressions into

in terms of the

(11) at the points o, we obtain N + 1 nonlinear algebraic equations for




.
-

Q..
e

.
I\‘
o

=

At R i ind Al endl MBR s e

the N + 1 unknowns U,, n=1,...,N and 8. We solve this system by

Newton's method.
Once this systen is solved for a given value of a, the shape of the jet

is obtained by numerically integrating the exact relations

ax _ 1 -
I 5 tg9de cos ) (15)
& _ 1 -t
il tgce sin 0 (16)

Here ;(o) and ;(c) are the values of x and y on the free surface

8J. Relations (15) and (16) follow directly from (1) and (8).

Some of the numerical results are shown in Table 1. These values are
correct to the number of decimal places shown. As n increases, the

coefficients Un decrease rapidly. Typical profiles are shown in Figure 4.

Our numerical results (see Table 1) indicate that B # 0 for all values
of a # ®, Therefore the slope of the surface profile of the jet is
discontinuous at the separation points for all values of a # », Both

velocity and curvature are infinite at these points.

In Pigure 5 we present a graph of B8 versus a. As a varies between

¥
8 varies continuously from 2

the condition (11) reduces to the free-streamline condition

0 and =, to 0.

For a ==,

T =o0. The solution is then
=0, U, =0, n=123... (17)
Substituting (17) into (10) we obtain the following exact solution
T, - 16 _=2n¢, B=0 (18)

This is the classical xirehho£!"| solution. Here the subscript e denotes

Q= »,
As a + 0, the profile of the jet approaches two horizontal straight
lines. The solution is then

. -
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Padars Ancedive A Jege Shd Bttt S OIS Ay DA i st i, an SO

X YO
3

Qoo a=20 a=5 a=0 __4

" N o 7
ot e T
St

. B oL

3 -
w2 R
" L.
N B 0 0.488 0.944 1.571 =L
. -

0.61 0.70 0.87 1.0 o

(2]

0.2025 0.4860 0.693

_.G
o

. J

@

$

-0.531 x 10~ 0.268 x 10~

o ¥
14
Q

N
o

U, 0 -0.339 x 10~ -0.315 x 10" o

-2

10° -0.047 x 10 0

e
X

R SR
[=]

: A 0 -0.667

X

%) Ug 0 -0.797 x 10~ -0.625 x 10 0 -

-2

Ug 0 -0.205 x 10~ -0.036 x 10

10~ =2

x

U, 0 -0.323 -0.237 x 10

-2

Ug (] -0.086 x 10 -0.020 x 10 0

-0.119 x 1072 2 i

-2 0

9 0 -0.17 x 10
Yo 0 ~0.04 x 10" -0.012 x 10 ()}

- Uy 0 -0.09 x 1072 -0.069 x 10~ 0 o

. Jo

-0.008 x 10 0
~2

- Uy, 0 -0.02 x 10~

=2 -0.045 x 10

o
’

[
4

:_‘ 013 0 -o.os x 10

- Usg 0 -0.01 x 1072 -0.005 x 1072 0 s

.
"y . . . ° . -.";:"\
¢ PO
" Tl
2 ’ ' : : : e
", U3o 0 -9 x 10'6 -4 % '0‘6 0 S

Table 1. Values of B, C and U, for various values of a.




T LW R e

Litadl dialk MatY <
R R

AT Attt T

[

Cidh, Wit Al B

Pasal ntl Javl el arvig ary

- T T T T

S

)

- — c—w
RIIwW ATy
ST

=~

‘0 ‘0T ‘o= 03 AToaT309dsox puodsaaaoo .(d) pue (q) ‘(e).
S9AIND BYL °DO JO SINTLA SNOTIVA 103 s9TTIoaxd pajndwo) °p axnbra

X PO €0 20 IO O

- _ — T T ] O
420
{ 0

q/ D N80

Ny Wy W
.

e e s m -
Tl
o L)
%



w...l.l.?.g* ‘4.1.4..4.14.....1.1— AR J~ PR NN J AN ey
e T PR to t PRI ................. : 2, oty L,

" . *® @0 D_ . ’ e AV ¢ ..\..r.....h.whb.
;

.

...

b,

"

v,

s

I

.1

* (o 8AIND) (LZ) PTMEIOF Y3 pue (q 2AIND) (ZZ) eTMIIOF Y3 ‘(¥ 9AIMD)
swaYyos TedTI8WNU 3Yy3 Aq ueAtb se 1 IqUNU I3QOM dY3 JO UOTIOUNZ
e se sjutcd uoyjeawdes sy3 @ 2DRJANS 9913 9yl Jo § adoys AYL °§ aanb1a

o 02 v2 8 2 9 O,

TeE TR TR TR TS

~ -

|
Y
O

“11-

e v T

UYL '\- '_l'

. N.
', ﬁ
'-
.
: w.
-
-O ‘
y
)
f
L
L4
(4 . N
'
’
L} - -
PO SR R s eyt A . B ) . ) ] i . .
» ..... vt ..... L ¢ v...... NI .- .. ) .u.«.....-\..-......, ) .-...i.-..--\. o 4 - 'A. .. .d\s-n . ARV . e




Li
B - 2 ’ U1 = n 2
- (19)
":. U =90 ’ n= 2,3,-00 .

- n
Substituting (19) into (10) we obtain the following exact solution

2
T, - 18, = tn tz (20)
1-1

Here the subscript 0 denotes a = 0.

The contraction ratio C of the jet is defined as the ratio of the width
of the jet far away from the orifice to the width of the orifice.

For a = ® ywe obtain from (18)

"Z Co ™7 - 7 ~ 0.61
s For a = 0 we obtain froe (20)
? Cp = 1.
ES In Pigure 6 we present numerical values of C versus a. As O decreases

from infinity, the contraction ratioc increases monotonically from C, to Co.
>
, 4. PERTURBATION SOLUTION FOR o LARGE
y For a = o, the solution is given by (1.8). Using (8) and (18) we
‘i obtain after some algebra
4
j ;;: =-(29)"% as 4s0, v=o0 (21)
?E Therefore the Rirchhoff1 solution yields infinite curvature at the separation
E points.

A perturbation solution for a large can be derived by using the method

;E of matched asymptotic expansions. The details of the calculation follow

closely the work of thdcn-nroock"s. Therefore they will not be repeated

here.
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The asymptotic remlts for @ large confirm that the slope is not

continuous st the separation points. In particular the asymptotic expression
for B 1is

8 ~ t(za)'vz as a+ & (22)
Relation (22) is shown in Pigure 5. The numerical results are in good
agreement with (22) for o large. For a = 20 the value of B predicted by

(22) agrees with the numerical results within two percent.

5. PERTURBATION SOLUTION FOR a SMALL

For a = 0, the solution is given by (20). We seek a solution for a

small in the form of an expansion in powers of a. Thus we write

2
T - ‘to + ¢t1 + 0(a ) (23)

2
0= Oo + 001 + 0(a ) (24)

Here T, and Oo are defined by (20). Substituting (23) and (24) into (11)

wve have -~
a0 1

— o &
d0 2%

cos © (25)

Integrating (25) and using the condition 31 (-;-) - § we obtain

‘5 _sinc-‘l

*
1 P a + 2 (26)

Relation (26) and the definition of B8 imply

¥ a
B 2" 20 (27)

Relation (27) is shown in Pigure 5. For a = 1 the value of § predicted by

(15) agrees with the numerical results within two percent.
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numerically by series truncation. Jet profiles are presented for various
values of the surface tension. In addition, perturbation solutions for both
small and large values of the surface tension are derived.
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